Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731452

RESUMO

In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 µM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.


Assuntos
Acetilcolinesterase , Corantes Fluorescentes , Peixe-Zebra , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Humanos , Limite de Detecção , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química
2.
Int J Genomics ; 2024: 3256694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304730

RESUMO

Aim: To investigate the specific expression profile, clinicopathological significance and mechanism of Zic family member 2 (ZIC2) in oral cancer were unclear. Patients and Methods. We explored the expression pattern and clinicopathological significance of ZIC2 in oral cancer through performing in-house tissue microarray and integrated analysis global RNA-seq and microarrays containing large samples. The molecular basis of ZIC2 in oral cancer was further investigated in the aspects of transcription network and immune correlations. We also performed in vitro experiments and calculated drug sensitivity of oral cancer with different ZIC2 expression levels in response to hundreds of compounds. Results: All data unanimously proved the significant overexpression of ZIC2 in oral cancer. The upregulation of ZIC2 was remarkably associated with the malignant clinical progression of oral cancer. ZIC2 was predicted to be targeted by miRNAs such as miR-3140, miR-4999, and miR-1322. The infiltration level of CD8+ T and central memory cells was positively related to the overexpression of ZIC2. Oral cancer patients with higher ZIC2 expression showed higher drug sensitivity to two compounds including AZD8186 and ERK_2240. Conclusions: We demonstrated the upregulation of ZIC2 in oral cancer and its promoting effect on the clinical advancement of oral cancer. The potential clinical value of ZIC2 in oral cancer deserves attention.

3.
IET Syst Biol ; 17(5): 245-258, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488766

RESUMO

The progression of prostate cancer (PCa) leads to poor prognosis. However, the molecular mechanism of PCa is still not completely clear. This study aimed to elucidate the important role of centromere protein A (CENPA) in PCa. Large numbers of bulk RNA sequencing (RNA-seq) data and in-house immunohistochemistry data were used in analysing the expression level of CENPA in PCa and metastatic PCa (MPCa). Single-cell RNA-seq data was used to explore the expression status of CENPA in different prostate subpopulations. Enrichment analysis was employed to detect the function of CENPA in PCa. Clinicopathological parameters analysis was utilised in analysing the clinical value of CENPA. The results showed that CENPA was upregulated in PCa (standardised mean difference [SMD] = 0.83, p = 0.001) and MPCa (SMD = 0.61, p = 0.029). CENPA was overexpressed in prostate cancer stem cells (CSCs) with androgen receptor (AR) negative compared to epithelial cells with AR positive. CENPA may influence the development of PCa through affecting cell cycle. Patients with nodal metastasis had higher expression level of CENPA. And patients with high CENPA expression had poor disease-free survival. Taken together, Overexpression of CENPA may influence the development of PCa by regulating cell cycle and promoting metastasis.


Assuntos
Relevância Clínica , Neoplasias da Próstata , Masculino , Humanos , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Imuno-Histoquímica , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mineração de Dados , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
World J Surg Oncol ; 20(1): 359, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369089

RESUMO

BACKGROUND: The molecular mechanism of laryngeal squamous cell carcinoma (LSCC) is not completely clear, which leads to poor prognosis and treatment difficulties for LSCC patients. To date, no study has reported the exact expression level of zinc finger protein 71 (ZNF71) and its molecular mechanism in LSCC. METHODS: In-house immunohistochemistry (IHC) staining (33 LSCC samples and 29 non-LSCC samples) was utilized in analyzing the protein expression level of ZNF71 in LSCC. Gene chips and high-throughput sequencing data collected from multiple public resources (313 LSCC samples and 192 non-LSCC samples) were utilized in analyzing the exact mRNA expression level of ZNF71 in LSCC. Single-cell RNA sequencing (scRNA-seq) data was used to explore the expression status of ZNF71 in different LSCC subpopulations. Enrichment analysis of ZNF71, its positively and differentially co-expressed genes (PDCEGs), and its downstream target genes was employed to detect the potential molecular mechanism of ZNF71 in LSCC. Moreover, we conducted correlation analysis between ZNF71 expression and immune infiltration. RESULTS: ZNF71 was downregulated at the protein level (area under the curve [AUC] = 0.93, p < 0.0001) and the mRNA level (AUC = 0.71, p = 0.023) in LSCC tissues. Patients with nodal metastasis had lower protein expression level of ZNF71 than patients without nodal metastasis (p < 0.05), and male LSCC patients had lower mRNA expression level of ZNF71 than female LSCC patients (p < 0.01). ZNF71 was absent in different LSCC subpopulations, including cancer cells, plasma cells, and tumor-infiltrated immune cells, based on scRNA-seq analysis. Enrichment analysis showed that ZNF71 and its PDCEGs may influence the progression of LSCC by regulating downstream target genes of ZNF71. These downstream target genes of ZNF71 were mainly enriched in tight junctions. Moreover, downregulation of ZNF71 may influence the development and even therapy of LSCC by reducing immune infiltration. CONCLUSION: Downregulation of ZNF71 may promote the progression of LSCC by reducing tight junctions and immune infiltration; this requires further study.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Regulação para Baixo , Imuno-Histoquímica , Carcinoma de Células Escamosas/patologia , RNA Mensageiro/genética , Mineração de Dados , Dedos de Zinco , Coloração e Rotulagem , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Prognóstico
5.
Pathol Res Pract ; 238: 154109, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36115333

RESUMO

BACKGROUND: Patients with oral squamous cell carcinoma (OSCC) have poor prognoses due to a limited understanding of the pathogenesis of OSCC. Zinc finger protein (ZNF) is the largest transcription factor family in the human genome and exert diverse and important functions. Nevertheless, the exact expression status and molecular mechanism of ZNF71 have not been described in OSCC. Therefore, this study aimed to identify the specific expression level of ZNF71 in OSCC tissues and to further interpret the potential molecular mechanism of ZNF71 in the pathogenesis of OSCC. METHODS: In-house immunohistochemical staining of 116 OSCC samples and 29 non-OSCC samples was employed to detect the expression status of ZNF71 at the protein level of OSCC tissues. Single-cell RNA sequencing data from 7 OSCC samples was used to explore the expression landscape of ZNF71 in different cell types from OSCC tissues. High-throughput RNA sequencing data and gene chips data from 893 OSCC samples and 301 non-OSCC samples were utilized to identify the specific expression level of ZNF71 at the bulk mRNA level of OSCC tissues. Here, standardized mean difference (SMD) value was applied to calculate the expression differences between OSCC group and non-OSCC group. Multiple datasets were included; hence, the results were considered to be more reliable. Sensitivity analysis was conducted to evaluate the stability of the results. Enrichment analysis and immune infiltration analysis were used to explore the underlying molecular mechanism of ZNF71 in OSCC. RESULTS: ZNF71 was significantly downregulated in OSCC tissues at the protein level (SMD = -1.96, 95 % confidence interval [95 % CI]: -2.43 to -1.50). ZNF71 was absent in various cell types from OSCC tissues including cancerous epithelial cells and tumor-infiltrating immune cells. ZNF71 was downregulated in OSCC tissues at the bulk mRNA level (SMD = -0.38, 95 % CI: -0.75 to -0.02). Enrichment analysis showed that positively and differentially co-expressed genes mainly concentrated on "herpes simplex virus 1 infection" and "regulation of plasma membrane bounded cell projection organization", and negatively and differentially co-expressed genes mainly participated in "cell cycle" and "DNA metabolic process". Moreover, the putative target genes of ZNF71 mainly participated in "cellular respiration" and "protein catabolic process". Finally, immune infiltration analysis revealed that ZNF71 expression was positively correlated with multiple immune cells including activated B cells, memory B cells, and natural killer (NK) cells, and negatively correlated with various immune cells, including CD56 bright NK cells, neutrophil, and immature dendritic cells. CONCLUSION: The downregulation of ZNF71 may influence the initiation and promotion of OSCC by reducing immune infiltration, accelerating cell cycle progression, and affecting metabolic process, and this requires further research.

6.
Foods ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681376

RESUMO

The aim of the study was to investigate the effects of whey protein isolate (WPI) fibrils entanglement on the stability and loading capacity of WPI fibrils-stabilized Pickering emulsion. The results of rheology and small-angle X-ray scattering (SAXS) showed the overlap concentration (C*) of WPI fibrils was around 0.5 wt.%. When the concentration was higher than C*, the fibrils became compact and entangled in solution due to a small cross-sectional radius of gyration value (1.18 nm). The interfacial behavior was evaluated by interfacial adsorption and confocal laser scanning microscopy (CLSM). As the fibril concentration increased from 0.1 wt.% to 1.25 wt.%, faster adsorption kinetics (from 0.13 to 0.21) and lower interfacial tension (from 11.85 mN/m to 10.34 mN/m) were achieved. CLSM results showed that WPI fibrils can effectively absorb on the surface of oil droplets. Finally, the microstructure and in vitro lipolysis were used to evaluate the effect of fibrils entanglement on the stability of emulsion and bioaccessibility of nobiletin. At C* concentration, WPI fibrils-stabilized Pickering emulsions exhibited excellent long-term stability and were also stable at various pHs (2.0-7.0) and ionic strengths (0-200 mM). WPI fibrils-stabilized Pickering emulsions after loading nobiletin remained stable, and in vitro digestion showed that these Pickering emulsions could significantly improve the extent of lipolysis (from 36% to 49%) and nobiletin bioaccessibility (21.9% to 62.5%). This study could provide new insight into the fabrication of food-grade Pickering emulsion with good nutraceutical protection.

7.
Foods ; 10(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359510

RESUMO

Casticin has wide-ranging functional activities, but its water solubility is poor in food products. Here, a nanoemulsion stabilized by Maillard whey protein isolate conjugates (MWPI) was fabricated to encapsulate casticin. The nanoemulsion, with an average diameter of 200 nm, possessed the capability to load 700 µg/g casticin. MWPI-stabilized nanoemulsion showed better stability than that of the WPI nanoemulsion during 4 weeks of storage. Both the inhibition effects of the casticin-loaded nanoemulsion on cancer cells and the process of cellular uptake were studied. Results revealed that the casticin-loaded nanoemulsion had better inhibitory activity in HepG2 and MCF-7 cells than free casticin. Cellular uptake of the nanoemulsion displayed a time-dependent manner. After the nanoemulsion passed into HepG2 and MCF-7 cells, it would locate in the lysosome but not in the nucleus. The main pathway for the nanoemulsion to enter HepG2 cells was pinocytosis, whereas, it entered MCF-7 predominantly through the clathrin-mediated pit. This work implies that MWPI-stabilized nanoemulsions could be utilized as an effective delivery system to load casticin and have the potential to be applied in the food and pharmaceutical industries.

8.
Int J Biol Macromol ; 111: 755-761, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29329810

RESUMO

In this study, starch with porous structures derived from purple sweet potato was prepared and used as a food-grade polymer for the microencapsulation of olive oil. The optimal reaction conditions for preparing porous starch were determined to improve its adsorption capacity as effective microcapsule-wall materials. Olive oil was then impregnated in microspheres, and loading ratio was optimized by investigating the restrictive factors, including the mass ratio of olive oil to porous starch, as well as the embedding temperature and time. The presence of olive oil in the starch matrix was confirmed by SEM, FTIR, and TGA. Results demonstrated that the porous starch-based microencapsulation exhibit a stable olive oil loading ratio and a significant improvement in oxidative stability compared with free olive oil. The newly-proposed process used in this work was easy to scale up for developing a new and attractive method for oil protection in the food industry.


Assuntos
Olea/química , Azeite de Oliva/química , Fenóis/química , Amido/química , Composição de Medicamentos , Frutas/química , Oxirredução , Estresse Oxidativo , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...